Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation.
نویسندگان
چکیده
A longer-than-unit-length transcript of potato spindle tuber viroid is correctly processed in a potato nuclear extract only if the central conserved region is folded into a multi-helix junction containing at least one GNRA tetraloop-hairpin. The cleavage-ligation site between G95 and G96 was mapped with S1 nuclease and primer extension. The structural motifs involved in the processing mechanism were analysed by UV crosslinking, chemical mapping, phylogenetic comparison and thermodynamic calculations. For processing, the first cleavage occurs within the stem of the GNRA tetraloop; a local conformational change switches the tetraloop motif into a loop E motif, stabilizing a base-paired 5' end. The second cleavage yields unit-length linear intermediates, whose 3' end is also base-paired and most probably coaxially stacked in optimum juxtaposition to the 5' end. They are ligated to mature circles autocatalytically, with low efficiency, or enzymatically, with high efficiency.
منابع مشابه
Structural differences within the loop E motif imply alternative mechanisms of viroid processing.
Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multibranched tetraloop structure to a loop E conformation. Here we present evidence that processing of Citrus viroid III (CVd-III), a memb...
متن کاملA mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle.
A Mini-RNA from potato spindle tuber viroid (PSTVd) was constructed specifically for cleavage and ligation to circles in vitro. It contains the C-domain with the so-called central conserved region (CCR) of PSTVd with a 17 nt duplication in the upper strand and hairpin structures at the left and rights ends of the secondary structure. The CCR was previously shown to be essential for processing o...
متن کاملProcessing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations
Replication of viroids, small non-protein-coding plant pathogenic RNAs, entails reiterative transcription of their incoming single-stranded circular genomes, to which the (+) polarity is arbitrarily assigned, cleavage of the oligomeric strands of one or both polarities to unit-length, and ligation to circular RNAs. While cleavage in chloroplastic viroids (family Avsunviroidae) is mediated by ha...
متن کاملChrysanthemum Chlorotic Mottle Viroid: a System for Reverse Genetics in the Family Avsunviroidae (Hammerhead Viroids)
Viroids are small single-stranded circular RNAs able to infect plants. Chrysanthemum chlorotic mottle was one of the first viroid diseases reported, but identification and characterization of the causing RNA was delayed by its low accumulation in vivo. Chrysanthemum chlorotic mottle viroid (CChMVd) (398-401 nt) adopts a branched conformation instead of the rod-like secondary structure character...
متن کاملMapping the molecular determinant of pathogenicity in a hammerhead viroid: a tetraloop within the in vivo branched RNA conformation.
Chrysanthemum chlorotic mottle viroid (CChMVd) is an RNA of 398-399 nt that can adopt hammerhead structures in both polarity strands. We have identified by Northern-blot hybridization a nonsymptomatic strain (CChMVd-NS) that protects against challenge inoculation with the symptomatic strain (CChMVd-S). Analysis of CChMVd-NS cDNA clones has revealed a size and sequence very similar to those of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 16 3 شماره
صفحات -
تاریخ انتشار 1997